Drones Tag Archive

My Predictions for 2017

4140

Written by:

In January of 2016 I made several predictions for the then-nascent year.  Predictions were made for new markets such as wireless charging, augmented reality, autonomous vehicles, and advances in medical diagnostics and internet access.  Progress in these markets was made on all fronts, sometimes faster and sometimes slower than anticipated.  So here we are about to start a new year and, perhaps foolishly I am ready once again to predict the future.

 

Wireless Power Will Become Mainstream:  Full disclosure:  I have made this exact same prediction for the last three years!  Wireless power will continue to gain traction with increased consumer demand charged by new products and applications. We have already seen companies such as Hewlett Packard, Dell, jjPlus, and Witricity introduce, or announce their intention to introduce products based on Airfuel standards. Qi deployments continue at a rapid pace.  Both standards can be bridged with multi-mode transmitters that work with anything.  Qualcomm has included the Airfuel format into their Snapdragon chipsets thus reducing the cost to enable hundreds of millions of cell phones, tablets, and Chromebooks.  Automotive companies such as Toyota and GM have introduced wireless charging in the center console of passenger vehicles.  Wireless charging of electric vehicles has been standardized and deployed.  Furniture makers such as IKEA are embedding wireless chargers into desks, end tables, lamps, and chair armrests.  Holding back the rate of deployment is the convenience factor.  Convenience is still the major concern with consumers’ complaints about Qi slow rate of charging, and the required precision alignment between sending and receiving units causing disappointment.  Airfuel standards promise to remedy these issues, and enable one large surface such as a desktop to be used to change multiple devices simultaneously, but deployment has lagged due to the small number of Airfuel compatible products available.  As far as the consumer is concerned, everyone hates power cords and therefore wireless power can’t come soon enough!  So, once again, I predict that 2017 will be the year that wireless power “arrives.”

2016 predictions_1

Wireless power enables the remote powering and charging of the myriad of battery-powered devices that have infiltrated our daily lives.

Key Takeaway: Wireless charging will be a reality in 2017 led by systems deployed on cars, furniture, and for phones, tablets, and small notebooks.

 

 

 

 

 

Augmented Reality Moved to Center Stage:  As virtual reality climbs into the consumer living room through video games, sports broadcasts, and other creative content, augmented reality (AR) has moved even faster than expected into our consciousness, if not yet the living room.  Pokémon GO was a viral AR hit that gave the consumer a taste of the possibilities derived from mixing our real-life surroundings with a virtual world.  The astronauts used Microsoft HoloLens at the International Space Station.  Magic Leap raised over $1B in venture capital and has teased us with their extraordinary AR demonstrations.  Augmented reality will increasingly be used for such purposes as 3D product design, remote surgery, and education training (to name a few). While virtual reality is primarily confined to entertainment, the use cases for augmented reality are seemingly limitless. The affordability of augmented reality products will become its own reality in 2017.

fembot

LiDAR enables applications such as real-time motion detection for video gaming, computers that respond to hand gestures, and fully autonomous vehicles.

Key Takeaway: Augmented reality, and autonomous vehicles will garner increasing attention throughout 2017 with real products gaining traction later in the decade. LiDAR has emerged as a key enabling technology.

 

 

 

 

 

 

 

Autonomous Cars Will Advance – But Keep Both Hands On The Wheel For Now:  This was the same headline we used a year ago for our 2016 predictions.  I think we get extra points for calling this one correctly! While the technology to enable autonomous vehicles has advanced at an extraordinary pace, we are still a few years away from the proliferation of consumer driven autonomous vehicles as we work out the technology and the regulatory issues. We have seen “beta-testing” of autonomous cars in Singapore and Pittsburg. Google continues to rack up millions of miles with an enviable safety record.  Ford, Volkswagen Group, Nissan, Baidu, BMW, Hyundai, Toyota, Renault, Volvo, GM, and Mercedes all have on-going road tests with their own autonomous creations. We also saw beta testing of an autopilot on Tesla vehicles.  This latter deployment has caused controversy due to the death of at least one driver using the autopilot in May 2016.  The balance between risk and reward has yet to be found, and Tesla has both updated their systems, and restricted functionality while more experience is gained under controlled conditions.  In the meantime, we will see more and more autonomy of vehicles under specific driving circumstances such as parking, freeway driving, and low speed stop-and-go.  One star has emerged from all the deployments and beta testing; LiDAR (Light Distancing and Ranging).  This method of creating accurate and rapid digital 3D images is used by all the key automotive companies experimenting with autonomous vehicles except for Tesla.  Tesla’s unique combination of radar and cameras is the outlier and was called out as a key reason for the May 2016 fatality.

LiDAR is also appearing in various unmanned aerial vehicles for survey and navigation applications.  LiDAR is beginning to show up in augmented reality systems to rapidly and cheaply generate an accurate image of “reality”.

In future years, autonomous vehicles may need vehicle-to-vehicle communications and will allow passengers to spend more time on their smartphones for both communications and entertainment.  This, in turn, will drive demand for greater wireless bandwidth, 5G implementation, and wireless charging in our cars to prevent smartphones from running out of battery power.

2016 predictions_3

LiDAR (Light Distancing and Ranging) uses pulsed lasers to rapidly create a three dimensional image or map of a surrounding area.

 

Internet Enablement In Underdeveloped Nations Will Grow at a Greater Clip:  While most people on the planet are still without Internet access, coverage via wireless technologies will continue to accelerate.  Balloons (such as Google Loon), satellites (such as the Google-SpaceX venture), and high altitude drones (Facebook) are the most likely solutions to serve much of the underdeveloped world in the coming years and decades.  Facebook has flown their drone, Google is flying their balloons, satellites are under development at SpaceX in conjunction with Google.  In addition, communications companies such as AT&T have announced their deployment of drones equipped with 4G mini base stations. These drones will deliver expanded bandwidth to concerts and sporting events where local cell stations might become temporarily overloaded.  This is a stepping stone to the deployment of such systems to areas of our planet where there are high population densities but low internet access.

2016 predictions_4

Companies such as ViaSat and Boeing are teaming up to create and produce satellites that will deliver high-speed internet to remote areas around the world.

Key Takeaway: Internet access to the 4 billion people currently without will be looking for an airborne solution. Drones? Balloons? Satellites?

 

 

 

 

 

Improved Medical Diagnostics Will Gain More Attention:  New, early detection techniques such as nano-RNA and micro imagining will make significant inroads towards early detection of certain types of cancers. For example, XRAY-in-a-pill colonoscopies will gain European approval in 2017 and will eliminate the key barriers to early detection of Colon Cancer. US approval is now expected in 2018 and GE Healthcare has been selected to produce the product.

colonoscopy pill

Check-Cap’s ingestible pill will change colon cancer screening

 

Servers will be limited by their power density: In the past few years the use of servers has shifted towards cloud computing, artificial intelligence, and deep learning.  All three of these trends have caused a rapid growth in the inter-server communications requirement.  Decisions and computations need to be made inside the server farm faster and faster to keep up with the growing use of massive parallel computation crunching big data to come up with the best recommendations for medical treatments, advertising campaigns, autonomous vehicle control algorithms, and personal digital assistants.  A new limitation just now surfacing is the density of the server itself.  We need to pack servers closer together, and have the functional elements inside each server packed more tightly to speed up our computation and communication.  Getting the heat out of the server is preventing improved performance.  Making the servers more energy efficient has now moved up from a cost-savings on the electric bill to a bottleneck to performance.  OpenRack and OpenCompute projects have all tried to address this key limitation by increasing the distribution voltage inside the server itself.  This, plus transitioning to new materials such as gallium nitride in the power conversion systems can reduce overall power consumption by 20% and increase server densities by 30-40%.

facebook-data-center-i

Data centers consume vast amounts of electrical energy. Operating power for these centers runs from megawatts to tens of megawatts.

Key Takeaway: Server performance requirements are being driven by increased use of cloud computing, artificial intelligence, and deep learning. A new bottleneck has emerged – power density.

 

 

 

 

 

 

 

mooreslaw_660

Moore’s law refers to an observation made by Intel co-founder Gordon Moore in 1965. He noticed that the number of transistors per square inch on integrated circuits had doubled every year since their invention.

Moore’s Law Continues its Decline: This is consistent with our prediction from last year.  Moore’s Law – the technology pact conceived by Intel co-founder Gordon Moore some 51 years ago – continues its decline. Even Intel has backed away from this promise.  In 2016 technology companies, facing slow growth in end markets and increasing technology development costs engaged in an unprecedented number of mergers and acquisitions. In 2017 the consolidation will continue with semiconductor executives seeking growth or golden exits through acquisition.  These activities will reduce the motivation for innovation.

 

Key Takeaway: Moore’s Law’s decline has catalyzed massive mergers and acquisitions in the semiconductor space. Innovation has slowed to a crawl with only a few players with the resources needed to advance the technology.

 

 

 

 

 

 

 

GaN Will Continue To Power Advancement:  The ability to fuel technology advancement, including the applications above, will require significantly increased speed, voltage, bandwidth and efficiency, not to mention meaningful miniaturization. As silicon reaches its performance limitations, other new entrants are delivering significantly greater performance with rapidly decreasing costs and hundreds of new applications in mainstream markets. Independent GaN companies will set the pace while established power silicon producers will downplay the significance of the technology.

Alex co-authored the first textbook on GaN transistors, “GaN Transistors for Efficient Power Conversion”, now in its second edition published by John Wiley and Sons.

Key Takeaway: Gallium nitride is picking up the baton and enabling vast new markets for semiconductors while changing the way we live.

Continue reading

Drones….up, up, and away!

3734

Written by:

Drones are on the rise. In fact, use of drones is only limited by our imagination – from merely recreational (think “drone races”) to delivering packages (as promised by Amazon) to a range of life-saving military uses (such as real-time battlefield imaging).  Emerging high speed, small size, and highly efficient gallium nitride power semiconductors are key contributors to the expansion of drone applications, including onboard equipment such as LiDAR imaging and navigation systems and 4G/5G communication transmitters. Let’s take a look at how GaN technology and the expansion of drone applications intersect.

drone-pic-i

A drone, or more technically, an unmanned aerial vehicle (UAV) is an aircraft without a pilot on board. Control of the drone is accomplished either under remote control from the ground or under control of an onboard computer.

Although drones originated mostly in military applications, civilian drones now vastly outnumber military drones, with estimates of over 9 million consumer drones to be sold in 2016 world wide for a total market value of near $3 billion.

And, the uses of drones are rapidly expanding to a wide range, and previously unthought-of applications – commercial, scientific, industrial, surveillance, agricultural, medical support, and, of course, recreational. In fact, the uses for drones are limited only by our imagination.

Providing Power to Onboard Drone Electronics

As unmanned battery-powered aircraft, drones, have a lot of electronic componentsrequiring various levels of electrical power onboard and GaN FETs and ICs can deliver the power needed efficiently to the point where power is needed – for example, to the battery control system, the sensors for gathering performance information, the GPS navigation system, the all-important micropressor, and the motor drives that actuate the propellers and other flying surfaces. Each of these critical components requires different levels of power at different time intervals.   In these applications, the higher efficiency, smaller size, lower weight, and lower cost of eGaN FETs and ICs, such as those offered by Efficient Power Conversion (EPC), are superior to traditional silicon-based MOSFETS.

 

drone-pcb

Mid-air Recharging

As the distances drones have to fly increase for applications such as package delivery, medical supplies delivery to remote area and in support of military operations, the need to recharge the onboard batteries of the drone while in route becomes necessary. Typically, high-end (quadcopter) drones can only fly for about 25 minutes.

An innovative way of recharging the batteries is to place “mid-air recharging stations” along the route of the drone.

Strategically located on communication towers, atop streetlights, and building rooftops, these refueling (or recharging) stations provide wireless charging antennae from which drones can have their batteries recharged wirelessly without having to land. Just think, those planning the use of drones for long-distance assignments could create a solar powered “recharging flight path” to remote parts of the world in order to deliver life-saving medicines – for example, through a jungle to isolated villages or to ice-bound sections of Alaska or northern Canada during the winter season.

Wireless charging is a signature application for GaN technology. Its high switching capability means that, along with GaN’s small size, smaller complementary circuit components can be used to create a compact wireless power transmit board for the charging system.

 

solace-power-drone

wirelessly powered drone by Solace Power

 

 

 

 

 

 

 

 

 

Powering the Drone’s Motors

Typically there are four to eight motors used to drive the rotor blades for lift and propulsion of a helicopter-type drone. GaN FETs and ICs are an excellent choice due to their small size and high switching speed. With the GaN transistor switching faster than the traditional MOSFET, the speed of the motors can be controlled more precisely.

In addition to having a vital role for the onboard electronic of the drone, GaN FETs and ICs have many opportunities for being used in a wide range of “payload systems” being carried aloft by the drone. Let’s look at a few.

Enabling Drones to be Micro Base Stations for Communications

With the ever-increasing rise in data and voice communications, companies like Google and AT&T are looking to use drones as mobile 4G, and eventually 5G, mobile communication cell phone base stations. For example, AT&T is proposing to use COWs (Cells on Wings) drones as mobile base stations to beef up cell phone signals during heavily attended sporting events and concerts. These flying base stations will be used to supplement local land-based stations when they are taxed with the excessive communications traffic of those attending the events.

google-digandeng-sri-lanka-sediakan-internet-lewat-balon

Uniquely suited for contributing to the implementation of the energy, size, and weight-saving transmission enabled by envelope tracking, GaN is the only transistor technology that can switch at the extremely high rates of speed needed to track the signal being transmitted. Envelope tracking, although a well-known technology, is enabled by the fast switching speed of GaN FETs and ICs and is emerging with 4G and will be essential for the implementation of 5G LTE.

 

velodyne-lidar-schematic

Airborne LiDAR systems are widely used for three-dimensional mapping and more recently considered as a technology to become the “eyes” for autonomous drones. Using LiDAR for vehicular navigation is not just limited to ground use; as a matter of fact, when coupled with GPS and the inertial information (pitch, yaw, roll) of the drone, a LiDAR system can accurately provide a three-dimensional map of the surroundings giving the drone an onboard, real-time, fully autonomous guidance system. As a payload onboard a drone, a LiDAR system is the foundation for many 3D mapping and surveillance applications. Let’s look at a few emerging uses for LiDAR, but first let’s discuss the contribution GaN technology makes to the performance of the LiDAR system and the accuracy of the images it produces.

GaN’s Contribution to LiDAR

Using the speed of light as a reference, LIDAR is an active method for remotely sensing objects. Simply put, it records the time it takes for a laser pulse to be sent and received after striking a distant object. The distance and image of the object is calculated from this information. By directing the laser around 360 degrees allows system to identify objects in the entire 3-D environment surrounding the LiDAR unit.

Knowing the precise time when the light pulses are triggered, and when they return to the sensor, contributes significantly to the accuracy of the image the LiDAR system creates. GaN FETs’ and ICs’ fast switching capability enables more accurate determination of the distance measurements between the time the light pulses are fired and the time they are received.

 

phoenix-aerial-drone

Also, since only a small amount of the light will be reflected back to the sensors, the ability of GaN components to deliver more power to the laser results in a more intense laser beam output, enabling the LiDAR system to “see” at a greater distance, or in less than perfect atmospheric conditions.

Generating a series of laser pulses that take snapshots of the entire surroundings, one pulse at a time, creates the full three-dimensional LiDAR image. The speed of GaN allows for much shorter pulses of light that consumes less power and creates a full 3-D image much faster and with higher resolution than with slower, silicon-based electronics.

 

 

 

epc-team-lidar-pic

Military Applications

Several military applications are known to be available, such as reconnaissance flights, to provide real time, extremely accurate landscapes. In addition to the gathering of general three-dimensional topographical mapping, a LiDAR equipped drone can provide information about building and enemy locations, as well as troop movements ahead in the surrounding area.  With LiDAR-equipped drones flying ahead of troops, the mapping information “seen” by the drone is transmitted to the troops in real time. The information is presented to the troops using augmented reality headsets, thus providing the troop with vital, life-saving “soldier point of view” rapidly generated from the drone’s “God’s eye view” of the battlefield.

drone-military-application

Interestingly, the drone carrying the LiDAR reconnaissance equipment may itself have a LiDAR navigation system. With LiDAR, the drone can fly safely at high rates of speed and low to the ground anticipating obstacles and setting the best flight path to spotlight enemy terrain and movements.

Topographical Mapping

Similar to the military use, perhaps the most widespread commercial use of airborne LiDAR systems today is for three-dimensional mapping. This form of mapping provides important information for many operations such as mining, forestry maturation, soil erosion, and agriculture.

drone-topographical-mapping

In agricultural applications, drone mounted LiDAR can be used to help farmers determine which areas of their fields to apply costly fertilizer to determine crop yields from various portions of the farm. These results will indicate the best locations to apply fertilizer. Crop mapping in orchards and vineyards are other agricultural applications. Drones equipped with LiDAR can monitor plant growth to determine if pruning is needed and to detect variations in fruit production.

In forestry, LiDAR mounted drones are used to scan forests not only to count trees but also to determine the growth and health of the forest. In a similar fashion, geologists and mining experts uses LiDAR mapping information to locate land deformities, slope erosion and possible mineral deposits.

And, LiDAR systems are not just for land use. Systems using “green light” are capable of penetrating water and mapping objects and the terrain below the surface. This water penetrating form of LiDAR is used to study underwater topography. Bathymetric use of drones are being used for aerial 3-D mapping of the coastal line, as well as for mapping ocean, river and lake floors, and explorations for underwater wreckage.

airplane-lidar

The drones are coming…

There is no doubt, drones are on the move; flying high and gaining momentum with the expansion of their practical use – recreational, delivering medicine, assisting soldiers in combat, and mapping terrain and ocean floors, just to name a few. Gallium nitride power semiconductors, with their high switching speed, small size, and highly efficiency are key contributors to this expansion of applications for drones and their onboard equipment.

The uses for drones are only limited by our imagination – certainly beyond the 192 future uses identified by futurist Thomas Frey. The growth of GaN technology and its use to support advances in the performance of drones and onboard equipment, will significantly contribute to the expansion of the use of drones! So, it is up, up and away for these technologies!

Continue reading