AirFuel Alliance – Charging is Changing

85

Written by:

Los Angeles, CA –

EPC CEO, Alex Lidow presenting at a recent AirFuel Members meeting.

 

wireless power

EPC CEO Alex Lidow and AirFuel CEO Sanjay Gupta

Magnetic resonance technology is the key to ubiquitous implementation – enabling large surface area transmission, spatial freedom for placement of receiving devices, and the ability to power multiple devices simultaneously.

The popularity of highly resonant wireless power transfer is increasing rapidly, particularly for applications targeting large power transmitting surface areas, with the capability to place receiving devices anywhere on the surface, and the ability to simultaneously power (or charge) multiple devices placed on the surface. The end applications are varied and evolving quickly from cell phone charging to powering handheld tablets and laptop computers.  Delivering up to 33 W supports all of these applications.

At the members meeting attendees learned about next-generation wireless power technology – including current and near-future deployments – and heard from leaders such as Alex Lidow from the semiconductor space as well as consumer electronics, robotics, AR/VR, and healthcare industries, to name a few.

AirFuel Alliance’s mission is to bring a diverse base of interoperable products to the global market that deliver the best wireless charging experience for consumers. The organization membership is made up of leading technology and consumer electronics companies. Its board of directors includes representatives from Dell, Duracell, Energous, EPC, ONSemiconductor, PowerSphyr, Qualcomm, Samsung Electronics, Starbucks and WiTricity.

Continue reading

Spirit Electronics “Tech Talk” with EPC CEO, Alex Lidow

177

Written by:

EPC Global Headquarters – El Segundo, CA

 

EPC CEO, Alex Lidow sits down with Spirit Electronics CEO, Marti McCurdi to discuss  how EPC has worked with industry leaders over the past decade to test high-reliability GaN products for military and space applications.

Continue reading

The Growing Ecosystem for eGaN® FET Power Conversion

199

Written by:

GaN ecosystem power conversion

The Growing Ecosystem for eGaN FET Power Conversion

In recent years, GaN-based power conversion has increased in popularity due to the inherent benefits of eGaN FETs over conventional Si transistors. Migrating a converter design from Si to GaN offers many system-level improvements, which require consideration of all the components in that system. This trend has subsequently spurred a growth in te ecosystem of power electronics that support GaN-based designs.

 

 

Continue reading

PSMA Technology Report Webinar Series: Getting from 48 Volts in Emerging Server and Automotive Applications

267

Written by:

Cloud servers, advanced gaming systems, artificial intelligence, cryptocurrency mining, and automotive electronics are all converging rapidly on 48 Volts as the new standard bus voltage. 48 V has the advantage of not requiring isolation and is therefore simpler, smaller, more efficient, and lower cost than other power conversion architectures. In every case, the relatively new GaN transistors and integrated circuits have demonstrated the ability to convert to-and-from 48 Volts with higher efficiency, and smaller size. GaN is also able to significantly reduce costs. In this seminar we will show the various applications and topologies used in these markets and show the steps taken to convince conservative design engineers that the best solution involves GaN.

If you would like to participate, please register online.

Continue reading

Driving GaN Into The Fast Lane

380

Written by:

Ask EPC’s chief executive, Alex Lidow, what the future holds for his GaN power device business, and automotive certification features prominently.

Recently delivering AEC Q101-qualified 80 V discrete transistors for LiDAR, 48V power distribution systems and other applications, the company’s latest enhancement-mode FETs deliver higher switching frequencies and efficiencies than silicon MOSFETs, in a smaller footprint. And this is just the beginning.

“We have more transistors as well as integrated circuits designed for LiDAR [sensors] and are proceeding with automotive certification here,” highlights Lidow. “LiDAR is under intense cost and performance pressure so integrating components and improving performance while lowering the cost is a big deal.”

Read More: https://compoundsemiconductor.net/article/104289/Driving_GaN_into_the_fast_lane

 

 

Alex Lidow, Founder and CEO, EPC

 

 

Continue reading

eGaN® Technology is Coming to Cars

395

Written by:

Alex Lidow, CEO and Co-founder of Efficient Power Conversion (EPC)

Automotive technology has entered a renaissance with the emergence of autonomous cars and electric propulsion as the driving forces.  IHS Markit estimates that 12 million cars will be autonomous by 2035 and 32 million cars will have electric propulsion according to Bloomberg New Energy Finance, Marklines.  Both trends translate into a large growth in demand for power semiconductors.  This is also happening at a time when silicon is reaching its performance limits in the world of power conversion, thus opening a huge new market for power devices based on gallium nitride grown on a silicon substrate (GaN-on-Si).

 

Why GaN for cars?

Over the past eight years during which GaN power devices have been in mass production, several large applications where GaN has significant advantages over the aging silicon MOSFET have emerged − LiDAR (Light Detection and Ranging), radar, 48 V – 12 V DC-DC conversion, high-intensity headlamps, and on-board electric vehicle charging.

One of the first applications anywhere for GaN transistors and ICs was LiDAR, prompted by the creative thinking of Dave Hall at Velodyne.  The idea was to trigger laser pulses so fast that the time of the flight of light of the emitted photons could be accurately measured, making it possible to rapidly measure distance within a few centimeters at distances of a few hundred meters.  Using a spinning disk with several solid-state lasers stacked parallel to the axis of rotation, Velodyne was able to create a fast and accurate digital point cloud, such as that shown in figure 1. Much to everyone’s amazement, this sensing technology, combined with cameras and radar sensors, was used by many to create prototype autonomous vehicles.

eGaN for Cars

Figure 1: LiDAR sensors using GaN FETs create a fast and accurate digital point cloud that is used by autonomous cars to identify surrounding structures and obstacles.

 

eGaN® FETs from EPC were the logical choice to use for firing the laser because the FETs could be triggered to create high-current pulses with extremely short pulse widths (See figure 2).  The short pulse width leads to higher resolution, and the higher pulse current allows the LiDAR system to see further.  These two characteristics, along with their extremely small size, make eGaN FETs ideal for radar and ultrasonic sensors in addition to LiDAR.

 

eGaN for Cars

Figure 2: An EPC2202 AEC-Q101 qualified FET is used to generate a 1.8 nano-second pulse (yellow trace) at a peak current of 26 A. The optical receiver pulse signal is shown as the blue trace.

 

LiDAR was just the start of a trend.  Along with the array of sensors used to provide input for navigating and controlling the vehicle, a new market developed for high performance graphic processors to integrate these sensor inputs, digest their meaning, and decide what commands to send to the self-driving actuators.  Fast processing speed being a key attribute, companies such as Mobileye (now part of Intel) and NVIDIA have introduced ultra-fast multicore processors.  These processors can gather, interpret, integrate, and make sense of all the inputs from multiple radar, LiDAR, camera, and ultrasonic sensors quickly enough to safely navigate our roads and highways.

Need for 48 V – 12 V Power Distribution Systems 

A cost of these high-performance processors is that they are very power hungry and put an additional burden on traditional automotive 12 V electrical distribution buses.  The solution to providing the high-power levels to these processors needed for automotive LiDAR systems turns out to be the same solution being applied to operate high performance gaming systems, high performance servers, artificial intelligence systems, and even cryptocurrency mining – implementation of a 48 V distribution bus, where current levels and wire sizes can be reduced by a factor of four.  Also, 48 V is the highest practical voltage for these applications because, given overshoot and various fault conditions, the voltage on the bus will stay below 60 V, avoiding the need for additional (and costly) safety measures.

The advantages of 48 V become even more evident when all the new power hungry electronically-driven functions and features appearing on the latest cars are considered.  For example:

  • Electric start-stop
  • Electric steering
  • Electric suspension
  • Electric turbo-supercharging
  • Variable speed air conditioning

These new functions and features are opening a large new market for 48 V – 12 V DC-DC converters.  Power can be generated at 48 V and converted to 12 V to run legacy systems and battery packs.

Superior Performance of GaN FETs and ICs

GaN FETs and ICs are the most efficient way to get from 48 V to 12 V as shown in figure 3.  GaN devices are many times smaller than a silicon power MOSFET, and many times faster [1] which leads to higher efficiency as well as smaller, lower cost peripheral components.  eGaN FETs from EPC are also on par with silicon when it comes to volume pricing [2].  Now the technology is taking the next step to wide-spread adoption by the automotive world by passing AEC-Q101 qualification testing.

Figure 3: The EPC9130 is a 700 W 48 V – 12 V DC-DC converter based on EPC2045 eGaN FETs. It has higher power density and higher efficiency than the best silicon-based converters. The eGaN FET-based converter also has the lowest cost bill of materials.

eGaN technology has been in mass production for over eight years, accumulating billions of hours of successful field experience in automotive applications.

AEC-Q101 Qualified eGaN FETs

EPC is offering its first two products that have completed AEC-Q101 qualification testing.  The products, EPC2202 (figure 4) and EPC2203 (figure 5), are discrete transistors in wafer level chip-scale packaging (WLCS) with 80 VDS ratings. These first AEC-Q101 qualified products will soon be followed with several more discrete transistors and integrated circuits designed for the harsh automotive environment.

Figure 4: The 80 V EPC2202 device passed AEC-Q101 testing. It measures 2.1 x 1.6 mm and has a pulsed current rating of 75 A.

 

 

 

 

 

 

 

 

 

Figure 5: The 80 V EPC2203 device passed AEC-Q101 testing. It measures 0.9 x 0.9 mm and has a pulsed current rating of 18 A.

 

 

 

 

 

 

 

 

The EPC2202 is an 80 V, 16 mΩ enhancement mode FET with a pulsed current rating of 75 A in a 2.1mm x 1.6mm chip-scale package. The EPC2203 is an 80 V, 73 mΩ part with a pulsed current rating of 18 A in a 0.9mm x 0.9mm chip-scale package. These eGaN FETs are many times smaller and achieve switching speeds 10 – 100 times faster than their silicon MOSFET counterparts.  Both products are designed for a wide range of emerging automotive applications including:

  • LiDAR
  • 48 V – 12 V DC-DC Converters
  • High Intensity Headlights
  • Ultra-high Fidelity Infotainment Systems

To complete AEC-Q101 testing, these eGaN FETs had to undergo rigorous environmental and bias-stress testing including humidity testing with bias (H3TRB), high temperature reverse bias (HTRB), high temperature gate bias (HTGB), temperature cycling (TC), as well as several other tests.  Of note is the fact that these wafer level chip-scale (WLCS) devices passed all the same testing standards created for conventional packaged parts, demonstrating that the superior performance of chip-scale packaging does not mean a compromise to ruggedness or reliability. These parts are produced in facilities certified to the Automotive Quality Management System Standard IATF 16949.

Conclusion: eGaN® Technology is Coming to Cars

Automotive electronics can now take full advantage of the improved efficiency, speed, smaller size, and lower cost of eGaN devices with the completion of the AEC-Q101 qualification testing of the EPC2202 and EPC2203.  Throughout 2018 there will be several additional 80 V parts undergoing certification, expanding the range of performance to higher currents.

References:

[1] A. Lidow, J. Strydom, M. de Rooij, D. Reusch, GaN Transistors for Efficient Power Conversion, Second Edition, Wiley, 2014.

[2] R. Cortland, “Gallium Nitride Power Transistors Priced Cheaper Than Silicon,” IEEE Spectrum, 8 May 2015

 

 

 

Continue reading

FeaturedGeneral

AirFuel Alliance – Charging is Changing

Los Angeles, CA – EPC CEO, Alex Lidow presenting at a recent AirFuel Members meeting.   Magnetic resonance technology is the key...

Continue reading

FeaturedInterviewsVideos

Spirit Electronics “Tech Talk” with EPC CEO, Alex Lidow

EPC Global Headquarters – El Segundo, CA   EPC CEO, Alex Lidow sits down with Spirit Electronics CEO, Marti McCurdi to discuss ...

Continue reading

FeaturedGeneral

The Growing Ecosystem for eGaN® FET Power Conversion

In recent years, GaN-based power conversion has increased in popularity due to the inherent benefits of eGaN FETs over conventional Si...

Continue reading