How This Tech in Self-Driving Cars Is Paving a Road Beyond Silicon


Written by:

Fortune LiDAR

Ever heard of gallium nitride transistors? You’re about to thanks to Lidar in cars. 

In the future, self-driving cars will require laser-based sensing tech, and these systems will need new types of high-speed transistors and chips that can beat out silicon.

That’s the assertion of Alex Lidow, a Stanford PhD physicist, entrepreneur, and CEO and founder of Efficient Power Conversion (commonly called EPC), a company based in El Segundo, Calif. that makes transistors and chips out of a material that operates more quickly and efficiently—and costs less than silicon.


Continue reading

Emerging server technologies: 6 hot trends to watch


Written by:

Emerging Server


Whether the servers running your company’s applications are on your developers’ desks, in your data center, or in your private cloud, the technologies inside the racks are what enable—or throttle—application speed, flexibility, and cost-effectiveness. The right new components and configurations, either added as upgrades, or “forklifted” in a hardware refresh, can be key to new activities such as analytics, big data, and machine learning.


Continue reading

‘Tis the season to be wasteful


Written by:



Tis' the Season


As the world gears up for the upcoming holiday shopping season, the technology needed by online retailers to meet demands will bring with it many unintended negative byproducts: increased inefficiency, waste and pollution, to name a few. Online sales are expected to grow by 12 percent in the holiday season, on top of an already unprecedented, some might say alarming demand for online information.

Why alarming? In 2014, data centers in the United States consumed approximately 100 billion kilowatt hours (kWh) of energy. According to Sudeep Pasricha, an associate professor in the Department of Electrical and Computer Engineering at Colorado State University, “that’s almost twice the electricity needed to power the whole state of Colorado for a year.” Further,this growing and insatiable desire for digital content is actually polluting the environment: the massive data centers that house all this digital content on servers are now responsible for an astounding 2 percent of global greenhouse gas emissions, a similar share to today’s aviation industry.

Continue reading

New Chips Providing A Spark For Wireless Charging


Written by:

MIT Technology Review

Aiming to jump-start the stalled market for wireless power systems, chip maker Efficient Power Conversion this week announced the launch of a new line of semiconductors made from gallium nitride, a material that’s 10 times faster than silicon and that many believe represents the future of the semiconductor industry. The new chips are designed specifically to support wireless power systems such as those produced by WiTricity.

EPC is headed by chip industry veteran Alex Lidow, who coinvented a type of transistor used for power conversion systems in a range of products including home appliances, air conditioners, and energy-efficient lighting. For many years the CEO of International Rectifier, still the largest producer of such transistors, Lidow has in recent years become one of the leading apostles of using gallium nitride, rather than silicon, to make transistors. EPC’s products are already in use in telecom equipment, satellites, laptop chargers, and virtual-reality devices. Now, says Lidow, his company’s technology is set to overhaul wireless power transfer.


Continue reading

48V Data Center Rack Saves $$$


Written by:

48 V Server Rack








“The reason we stop at 12V is because of the limitations of silicon,” specifically in power MOSFETs, explains Alex Lidow, CEO of Efficient Power Conversion (EPC), a company that specializes in GaN circuitry. “The speed of your device — how fast it can switch — determines how far it can reach in terms of input voltage to output voltage. Because of the much higher switching speeds of gallium nitride you can efficiently go from 48V all the way down to 1V all in one stage.”

EPC supplies Texas Instruments Inc. (NYSE: TXN) with GaN transistors that TI incorporates in its LMG5200 modules designed for 48V to 1V conversion. TI claims its modules operate at 90% to 91% efficiency, Lidow notes.In comparison, the efficiency of multi-stage voltage conversion with silicon MOSFETs maxes out somewhere in the 77% to 78% range. When you go from silicon-based conversion to GaN-based conversion, “you cut your power losses in half, and you improve your server power efficiency by 10% with just that one act,” Lidow says.

Continue reading