LiDAR Tag Archive

Drones….up, up, and away!

3360

Written by:

Drones are on the rise. In fact, use of drones is only limited by our imagination – from merely recreational (think “drone races”) to delivering packages (as promised by Amazon) to a range of life-saving military uses (such as real-time battlefield imaging).  Emerging high speed, small size, and highly efficient gallium nitride power semiconductors are key contributors to the expansion of drone applications, including onboard equipment such as LiDAR imaging and navigation systems and 4G/5G communication transmitters. Let’s take a look at how GaN technology and the expansion of drone applications intersect.

drone-pic-i

A drone, or more technically, an unmanned aerial vehicle (UAV) is an aircraft without a pilot on board. Control of the drone is accomplished either under remote control from the ground or under control of an onboard computer.

Although drones originated mostly in military applications, civilian drones now vastly outnumber military drones, with estimates of over 9 million consumer drones to be sold in 2016 world wide for a total market value of near $3 billion.

And, the uses of drones are rapidly expanding to a wide range, and previously unthought-of applications – commercial, scientific, industrial, surveillance, agricultural, medical support, and, of course, recreational. In fact, the uses for drones are limited only by our imagination.

Providing Power to Onboard Drone Electronics

As unmanned battery-powered aircraft, drones, have a lot of electronic componentsrequiring various levels of electrical power onboard and GaN FETs and ICs can deliver the power needed efficiently to the point where power is needed – for example, to the battery control system, the sensors for gathering performance information, the GPS navigation system, the all-important micropressor, and the motor drives that actuate the propellers and other flying surfaces. Each of these critical components requires different levels of power at different time intervals.   In these applications, the higher efficiency, smaller size, lower weight, and lower cost of eGaN FETs and ICs, such as those offered by Efficient Power Conversion (EPC), are superior to traditional silicon-based MOSFETS.

 

drone-pcb

Mid-air Recharging

As the distances drones have to fly increase for applications such as package delivery, medical supplies delivery to remote area and in support of military operations, the need to recharge the onboard batteries of the drone while in route becomes necessary. Typically, high-end (quadcopter) drones can only fly for about 25 minutes.

An innovative way of recharging the batteries is to place “mid-air recharging stations” along the route of the drone.

Strategically located on communication towers, atop streetlights, and building rooftops, these refueling (or recharging) stations provide wireless charging antennae from which drones can have their batteries recharged wirelessly without having to land. Just think, those planning the use of drones for long-distance assignments could create a solar powered “recharging flight path” to remote parts of the world in order to deliver life-saving medicines – for example, through a jungle to isolated villages or to ice-bound sections of Alaska or northern Canada during the winter season.

Wireless charging is a signature application for GaN technology. Its high switching capability means that, along with GaN’s small size, smaller complementary circuit components can be used to create a compact wireless power transmit board for the charging system.

 

solace-power-drone

wirelessly powered drone by Solace Power

 

 

 

 

 

 

 

 

 

Powering the Drone’s Motors

Typically there are four to eight motors used to drive the rotor blades for lift and propulsion of a helicopter-type drone. GaN FETs and ICs are an excellent choice due to their small size and high switching speed. With the GaN transistor switching faster than the traditional MOSFET, the speed of the motors can be controlled more precisely.

In addition to having a vital role for the onboard electronic of the drone, GaN FETs and ICs have many opportunities for being used in a wide range of “payload systems” being carried aloft by the drone. Let’s look at a few.

Enabling Drones to be Micro Base Stations for Communications

With the ever-increasing rise in data and voice communications, companies like Google and AT&T are looking to use drones as mobile 4G, and eventually 5G, mobile communication cell phone base stations. For example, AT&T is proposing to use COWs (Cells on Wings) drones as mobile base stations to beef up cell phone signals during heavily attended sporting events and concerts. These flying base stations will be used to supplement local land-based stations when they are taxed with the excessive communications traffic of those attending the events.

google-digandeng-sri-lanka-sediakan-internet-lewat-balon

Uniquely suited for contributing to the implementation of the energy, size, and weight-saving transmission enabled by envelope tracking, GaN is the only transistor technology that can switch at the extremely high rates of speed needed to track the signal being transmitted. Envelope tracking, although a well-known technology, is enabled by the fast switching speed of GaN FETs and ICs and is emerging with 4G and will be essential for the implementation of 5G LTE.

 

velodyne-lidar-schematic

Airborne LiDAR systems are widely used for three-dimensional mapping and more recently considered as a technology to become the “eyes” for autonomous drones. Using LiDAR for vehicular navigation is not just limited to ground use; as a matter of fact, when coupled with GPS and the inertial information (pitch, yaw, roll) of the drone, a LiDAR system can accurately provide a three-dimensional map of the surroundings giving the drone an onboard, real-time, fully autonomous guidance system. As a payload onboard a drone, a LiDAR system is the foundation for many 3D mapping and surveillance applications. Let’s look at a few emerging uses for LiDAR, but first let’s discuss the contribution GaN technology makes to the performance of the LiDAR system and the accuracy of the images it produces.

GaN’s Contribution to LiDAR

Using the speed of light as a reference, LIDAR is an active method for remotely sensing objects. Simply put, it records the time it takes for a laser pulse to be sent and received after striking a distant object. The distance and image of the object is calculated from this information. By directing the laser around 360 degrees allows system to identify objects in the entire 3-D environment surrounding the LiDAR unit.

Knowing the precise time when the light pulses are triggered, and when they return to the sensor, contributes significantly to the accuracy of the image the LiDAR system creates. GaN FETs’ and ICs’ fast switching capability enables more accurate determination of the distance measurements between the time the light pulses are fired and the time they are received.

 

phoenix-aerial-drone

Also, since only a small amount of the light will be reflected back to the sensors, the ability of GaN components to deliver more power to the laser results in a more intense laser beam output, enabling the LiDAR system to “see” at a greater distance, or in less than perfect atmospheric conditions.

Generating a series of laser pulses that take snapshots of the entire surroundings, one pulse at a time, creates the full three-dimensional LiDAR image. The speed of GaN allows for much shorter pulses of light that consumes less power and creates a full 3-D image much faster and with higher resolution than with slower, silicon-based electronics.

 

 

 

epc-team-lidar-pic

Military Applications

Several military applications are known to be available, such as reconnaissance flights, to provide real time, extremely accurate landscapes. In addition to the gathering of general three-dimensional topographical mapping, a LiDAR equipped drone can provide information about building and enemy locations, as well as troop movements ahead in the surrounding area.  With LiDAR-equipped drones flying ahead of troops, the mapping information “seen” by the drone is transmitted to the troops in real time. The information is presented to the troops using augmented reality headsets, thus providing the troop with vital, life-saving “soldier point of view” rapidly generated from the drone’s “God’s eye view” of the battlefield.

drone-military-application

Interestingly, the drone carrying the LiDAR reconnaissance equipment may itself have a LiDAR navigation system. With LiDAR, the drone can fly safely at high rates of speed and low to the ground anticipating obstacles and setting the best flight path to spotlight enemy terrain and movements.

Topographical Mapping

Similar to the military use, perhaps the most widespread commercial use of airborne LiDAR systems today is for three-dimensional mapping. This form of mapping provides important information for many operations such as mining, forestry maturation, soil erosion, and agriculture.

drone-topographical-mapping

In agricultural applications, drone mounted LiDAR can be used to help farmers determine which areas of their fields to apply costly fertilizer to determine crop yields from various portions of the farm. These results will indicate the best locations to apply fertilizer. Crop mapping in orchards and vineyards are other agricultural applications. Drones equipped with LiDAR can monitor plant growth to determine if pruning is needed and to detect variations in fruit production.

In forestry, LiDAR mounted drones are used to scan forests not only to count trees but also to determine the growth and health of the forest. In a similar fashion, geologists and mining experts uses LiDAR mapping information to locate land deformities, slope erosion and possible mineral deposits.

And, LiDAR systems are not just for land use. Systems using “green light” are capable of penetrating water and mapping objects and the terrain below the surface. This water penetrating form of LiDAR is used to study underwater topography. Bathymetric use of drones are being used for aerial 3-D mapping of the coastal line, as well as for mapping ocean, river and lake floors, and explorations for underwater wreckage.

airplane-lidar

The drones are coming…

There is no doubt, drones are on the move; flying high and gaining momentum with the expansion of their practical use – recreational, delivering medicine, assisting soldiers in combat, and mapping terrain and ocean floors, just to name a few. Gallium nitride power semiconductors, with their high switching speed, small size, and highly efficiency are key contributors to this expansion of applications for drones and their onboard equipment.

The uses for drones are only limited by our imagination – certainly beyond the 192 future uses identified by futurist Thomas Frey. The growth of GaN technology and its use to support advances in the performance of drones and onboard equipment, will significantly contribute to the expansion of the use of drones! So, it is up, up and away for these technologies!

Continue reading

GaN Technology for the Connected Car

2106

Written by:

GaN for the connected car

GaN technology is disruptive, in the best sense of the word, making possible what was once thought to be impossible – eGaN® technology is 10 times faster, significantly smaller, and with higher performance at costs comparable to silicon-based MOSFETs. The inevitability of GaN displacing the aging power MOSFET is becoming clearer with domination of most existing applications and enabling new ones.

This posting highlights the contribution GaN technology is making to several automobile applications – the increasingly complex infotainment system, all important safety systems, and the emergence of electrically powered vehicles.

Automotive Applications: Introduction and Overview

The automotive industry understands the trend to have the interior of the car a “living space,” and has begun to show its vision of the future for the fully mobile lifestyle. The dashboard is being taken over by the smartphone, while sensors and computers are being added to increase its safety. Moving toward a longer-term goal, our vehicles are on a path to become fully electric, reducing our use of fossil fuel needed to power them.

There are a few things in common with these trends. They all involve batteries, a greater reliance on sensors, and they all rely on wireless communications. As a result, there is growing pressure for faster sensors, more wireless bandwidth, and anything that will help us “un-tether” from the relentless recharging of our phones and other electronic devices, including one day, our cars.

Let’s take a closer look.

Infotainment: Smartphone and Wireless Power Throughout the Cabin

Mobility has become a major theme for the consumer. Smart phones allow us to take our music, games, movies, television shows, contacts, and “the internet” with us at all times…even in our automobiles! Applications such as Google Maps give us directions, tell us about traffic conditions, and provide us with street and satellite images of our destination. We want our vehicle to be completely in synch with our smartphones, tablets, laptops, and desktops.

A rapidly emerging technology to enable the batteries in our electronic devices keep up with the demands added by the vehicle’s infotainment system is wireless power transfer. The latest techniques enable wireless charging of multiple objects without contact with the power transmission unit (PTU) with efficiencies similar to wired chargers.

Wireless phone charging in a car is becoming more critical as the smartphone itself is becoming the information receiver and router for the dashboard infotainment center. Several automotive manufacturers are adopting operating system standards that enable seamless Android or iOS interfaces to dashboards that become “slaves” to the information and entertainment available in the drivers and other occupants’ smartphones.

wireless phone charging in a car

The AirFuel Alliance wireless power transmission standard developed by a consortium of electronics industry leaders such as Samsung, Qualcomm, Intel, and EPC is undergoing rapid adoption in mobile phone and tablet charging applications. To Implement this standard, several automotive manufacturers are developing embedded wireless charging stations in the center console of the vehicle so smartphones, as well as other mobile devices, can remain charged while the automobile is in operation, despite intense and continuous usage.

Given that the AirFuel Alliance standard uses a 6.78 MHz standard frequency for power transmission, a stretch for the aging silicon power devices, GaN technology is the heavy favorite for adoption over the slower and less efficient silicon power MOSFET in both mobile and automotive applications.

Beyond using wireless power transfer technology to charge devices, some visionary designers in the automotive industry are exploring ways to use this technology to reduce or eliminate the wiring harnesses throughout the car thus reducing cost, weight, and fire hazards.

In addition to wireless charging becoming commonplace within the car’s cabin, it is becoming available to charge fully electric cars or plug-in hybrids. With a “charging mat” as the power transmitter, you will merely have to place the mat on the floor of your garage, park the car over the mat and off you go – no need to “connect the car to an outlet.”

Safety: Sensing and Autonomous Control

To ensure safety and prevent collisions, it is critical that a vehicle be aware of its surroundings at all times. The higher the speed of the vehicle, the more rapidly the “situational awareness” system needs to sense, and the more precisely it needs to interpret the distance to the potential hazard.

Today automotive manufacturers use a variety of sensors in these safety-related functions, including ultrasonic sensing, microwave radar short-range radar, and video pattern recognition. Light Distancing and Ranging (LiDAR) sensors have recently begun to emerge in automotive sensing applications.

LiDAR how it works

Although we anticipate broad adoption in automotive, initially LiDAR sensors were used to generate three-dimensional digital topographical maps used for landscape mapping and navigation software by companies such as Google and Nokia NAVTEQ-Bing. Because LiDAR chases the speed of light for improving resolution, eGaN® power transistors, with about a 10 times advantage in switching speed over silicon MOSFETs have been used almost exclusively in these mobile applications.

The imaging speed and depth resolution has become so good using eGaN® FETs that manufacturers experimenting with autonomous vehicles are using similar LiDAR sensors for driverless navigation systems. In addition, several automakers are incorporating eGaN® FET-based LiDAR sensors in their vehicles for general collision avoidance and blind spot detection. LiDAR has a very exciting future, since it is the detection and guidance system being used for “driverless cars.”

 

 

Electric Drive: Automotive Freedom From Fossil Fuels

The inevitable evolution – from an internal combustion engine, to hybrid vehicles, plug-in hybrids, and, finally, to fully electrically powered cars – is potentially a very large market for GaN technology. The demand for electrical power grows in proportion to the amount of propulsion handled by the electric motor; for example, the Tesla S delivers 416 hp, or 310 kW of electrical power to the rear wheels. Delivering more power to propel a vehicle requires higher voltages in order to keep the current levels flowing through the motor windings with minimum conduction losses. Today the dominant transistor in electric or hybrid vehicle propulsion systems is the insulated gate bipolar transistor (IGBT) in voltages ranging from 500 V to 1200 V.

However, wide bandgap (WBG) transistors made using either silicon carbide (SiC) or GaN technology hold great promise for this high power application, since they have higher efficiency at lower switching frequencies and possess the ability to operate at much higher temperatures.

The requirements for electric motor drives sit at the interface between GaN, SiC and IGBT technologies. Ultimately, the cost and reliability of the electric drive system will determine the winner for this application, but for now, it is too soon to call.

Summary: GaN Technology for the Connected Car

GaN technology is on the move in the automotive industry!

In 2013 there were 65 million cars manufactured worldwide. This presents a huge potential market for any technology that can improve the customers’ automotive experience. Infotainment mobility through wireless charging and autonomous vehicles, enabled by LiDAR sensors, are two areas that will emerge within the automotive world over the next few years. Both of these applications rely on the higher speed and low cost of GaN transistors.

In the future, as electric vehicles gain acceptance and become more ubiquitous, motor controls for the powertrain has the potential to become an enormous market for GaN transistors. The issue among the competing technologies – GaN, SiC and IGBT – will be the cost.

The automotive industry is undergoing a technological disruption and is taking advantage of high performance gallium nitride technology. GaN devices are appearing in an ever-increasing number of systems, with the future looking even more promising, as discussed above several areas are clearly emerging:

  • Infotainment – where electronic devices such as phones and GPS systems can be powered wirelessly
  • Safety – LiDAR sensing and autonomous control of the vehicle is leading to safer driving with more precise avoidance control systems
  • Electric Drive – electric vehicle propulsion putting us on the path to “freedom from fossil fuels”
  • Autonomous Vehicles – LiDAR sensing and electronic control systems are available and being tested throughout the world

Gallium nitride is displacing silicon as the fundamental material used for power conversion with the promise to displace silicon not just in power transistors, but in analog and digital integrated circuits as well. EPC is pursuing this $350B combined power transistor, analog and digital IC semiconductor market, and the reason is simple – GaN technology is faster, smaller, and now, price competitive with MOSFETs.

Continue reading

Four Industries that will be Transformed by GaN

1909

Written by:

In my last post we discussed a few automotive applications that will be big markets for GaN technology. But this is just a small part of the GaN story!

GaN transistors such as eGaN FETs from EPC are today available with performance 10 times better than the best commercial silicon.  What happens when several devices are integrated to create a system on a single chip? What happens when the performance of that chip is 100 times better than silicon?

In this posting we will look out 5 to 10 years and see how a transformative change in semiconductor technology is transformative to our world in almost every way.

Transforming Space

GaN enables satellitesPower converters used in harsh environments, such as space, high-altitude flight, or high-reliability military applications must be resistant to damage or malfunctions caused by radiation. eGaN FETs today perform 40 times better electrically while being able to withstand 10 times the radiation compared with the aging Rad Hard power MOSFET.  This enables entirely new architectures for satellite power and data transmission.  Elon Musk, CEO of SpaceX, has set as his mission to reduce the cost of putting objects in space by a factor of 10.  With eGaN technology applied to satellites we can reduce the size of the electronics, eliminate the shielding required, and greatly improve the performance of the data communications.  This eliminates solar panels, makes the entire system smaller and lighter weight, and extends the life of the satellite.  A factor of two reduction in weight is within our reach with today’s technology, whereas a factor of 10 is possible when eGaN technology is used to produce entire systems on a single chip.  Multiply the impact of SpaceX with eGaN technology and we will change the way we use space and accelerate the exploration (and possible colonization?) of our universe.

Transforming the Machine Interface

LiDARLiDAR uses high speed pulsed lasers to rapidly create a three dimensional image or map of a surrounding area.  One of the earliest adopters of this technology was the “driverless” car. Today’s eGaN FETs are enabling new and broader applications such as 3D printing, real-time motion detection for augmented reality glasses, computers that respond to hand gestures as opposed to touch screens, and fully autonomous vehicles. As eGaN technology evolves, LiDAR can be further improved in both resolution and cost.  Projects are already underway to include “3D Awareness” in our cell phones. Imagine if phones could understand the space around us.  We will be able to get directions in a new, more comprehensive way. An iPhone today can provide the location of the building you desire, but with LiDAR, 3-D mapping could lead you straight to a specific office.

Transforming the Use of Electricity

wires suck Wires suck.  Today, we need wires to supply power to our ever-growing collection of electrically-powered gadgets.  For those gadgets that are so completely indispensable, we need to take them with us at all times, and they need batteries that must be recharged all-too-frequently.  Expected in late 2015, wireless power systems using eGaN technology will begin to unload this wired burden by providing energy wirelessly to charge cell phones and tablets.   By integrating thin transmission coils in the floor tiles and the walls of buildings and homes, the need for wall sockets will be eliminated altogether!  This same wireless power technology can be used to charge electric vehicles when parked over a transmitting coil embedded in the floor of a garage.  A project is underway to embed wireless chargers at bus stops.  Eventually, in a one-minute stop, a bus can get enough charge to drive a mile to the next bus stop.  This could eliminate the need for most of the heavy batteries and overhead electrical systems that burden electric buses today.

eGaN technology makes possible the efficient transmission of electricity at safe frequencies that are difficult for their silicon transistor ancestors.  Taking eGaN technology to higher voltages and higher frequencies extends the wireless power transfer distance.  Integrating eGaN technology into complete systems on a chip enable wireless power systems to be embedded into almost every device that consumes electricity.

Transforming Medicine

GaN transforming medicineWe are all getting older every day, and, as we age, we develop more opportunities for frailties and chronic health problems.  Today there are major advances in fields such as implantable systems, imaging, and prosthetics that are enabled by eGaN technology.

Wireless power is already having an impact on implantable systems such as heart pumps.  Beyond just artificial hearts, many other medical systems can also benefit.  As Dr. Pramod Bonde of the University of Pittsburg Medical Center speculated, “[wireless power] can be leveraged to simplify sensor systems, to power medical implants and reduce electrical wiring in day-to-day care of the patients.”

But it’s not just eGaN technology in wireless power that is transforming medicine.  Imaging technology is also improving by leaps and bounds!  The resolution of MRI machines is being enhanced through the development of smaller and more efficient sensing coils using eGaN FETs and ICs.  Diagnostic colonoscopies are about to become a thing of the past due to today’s eGaN FETs.  These types of non-invasive imaging breakthroughs significantly reduce the cost of health care through early warning and non-invasive diagnostics. As we integrate entire systems on a single eGaN chip, miniaturization and image resolution improves the standard of care while medical costs come down.

eGaN Technology –Transforming the Future

In this posting, we talked about a few of the transformations that will be enabled as eGaN technology evolves.  EPC is taking the 10-times gap in performance between eGaN FETs and MOSFETs and improving it to a 1000-times gap.  This technology is also being applied to integrated circuits made be EPC in eGaN technology.  EPC is pursing parallel paths – discrete power semiconductors and fully integrated circuits that form building blocks for multiple applications, but will ultimately evolve into complete systems-on-a-chip for very high performance, low cost, and high value-added applications like the ones discussed above.

The eGaN journey has just begun!

Continue reading

Is GaN Disruptive? Revisiting the Criteria.

1768

Written by:

In March 2010 Efficient Power Conversion (EPC) proudly launched our GaN technology at the CIPS conference in Nuremberg, Germany.  Parts and development kits were readily available off-the shelf and therefore designers could immediately get started with a new state-of-the-art semiconductor technology.

 

EPC2035_38
Figure 1: EPC2036 die photo.  This family of devices was the first to break the price of MOSFETs with the same voltage and on-resistance.

 

 

 

 

At that time, we listed four key attributes we believed a new semiconductor technology needed in order to be really disruptive to the end markets.  A lot has happened in the six years since.  GaN has continued to ascend as the presumptive replacement for the aging power MOSFET, yet there are still a few design engineers and technical managers that remain skeptical.  So let’s look again at these four key attributes and see where GaN stands in addressing them.

 

The Four Requirements:

1 – Does it enable significant new applications?

2 – Is it easy to use?

3 – Is it VERY cost effective to the user?

4 – Is it reliable?

 

 

Does it enable significant new applications?

GaN transistors and integrated circuits are significantly faster and smaller than the best silicon MOSFETs.  Today, commercially available eGaN® FETs and ICs are 5 to 50 times better than the silicon state-of-the-art.  This large jump in performance has led to several new applications that were not possible until the availability of GaN technology.  But eGaN FETs, and in fact any GaN transistor from any of several manufacturers, are still several orders of magnitude away from GaN’s theoretical performance limits.  There is a learning curve ahead that only widens the performance gap between GaN and silicon, and continues to enable new applications and transform entire end markets. Here are just a few examples:

Transforming Space

Power converters used in harsh environments, such as space, high-altitude flight, or high-reliability military applications must be resistant to damage or malfunctions caused by radiation. eGaN FETs today perform 40 times better electrically while being able to withstand 10 times the radiation compared with the aging Rad Hard power MOSFET. This enables entirely new architectures for satellite power and data transmission.

2016 predictions_4

Figure 2:  eGaN FETs and ICs can withstand ten times more radiation than silicon devices, making them ideal for satellite systems.

 

Elon Musk, CEO of SpaceX, has set as his mission to reduce the cost of putting objects in space by a factor of 10. With eGaN technology applied to satellites we can reduce the size of the electronics, eliminate the shielding required, and greatly improve the performance of the data communications. This eliminates solar panels, makes the entire system smaller and lighter weight, and extends the life of the satellite.

Reducing the weight by a factor of two is within our reach with today’s technology, whereas a factor of 10 reduction is possible as eGaN technology is used to produce entire systems on a single chip. Multiply the impact of SpaceX with eGaN technology and we will change the way we use space and accelerate the exploration (and possible colonization?) of our universe.

Augmented Reality and Autonomous Vehicles

LiDAR (Light Distancing and Ranging) uses high speed pulsed lasers to rapidly create a three dimensional image or map of a surrounding area. One of the earliest adopters of this technology was the “driverless” car. LiDAR is evolving quickly in both resolution, size, and cost and will soon start appearing in a variety of commercial drones, including the replacement of many existing sensors currently found on conventional vehicles.

2016 predictions_3Figure 3a:  Autonomous cars depend on LiDAR systems powered by eGaN FETs and ICs.

 

meta-augmented-reality-glasses-designboom-01Figure 3b:  Many augmented reality systems use LiDAR to quickly create a digital image or the surroundings.  GaN improves accuracy, speed and greatly reduces power usage.

 

LiDAR is the fastest and lowest-cost way to develop a 3D digital image and thus ideal for new applications such as augmented and merged reality systems. Projects are already underway to include “3D Awareness” in our cell phones. Imagine if phones could understand the space around us. We will be able to get directions in a new, more comprehensive way. An iPhone today can provide the location of the building you desire, but with LiDAR, 3-D mapping could guide you inside the building and straight to a specific office.

Transforming the Use of Electricity

Wires suck! Today, we need wires to supply power to our ever-growing collection of electrically-powered gadgets. For those gadgets that are so completely indispensable, we need to take them with us at all times, and they need batteries that must be recharged all-too-frequently.

wireless_power_banners_1600x330_02

Figure 4: Wireless power will eventually eliminate power cords throughout the home.

 

Wireless power systems using eGaN technology are beginning to unload this wired burden by providing energy wirelessly to power and charge cell phones, tablets, and computers. By integrating thin transmission coils in furniture, the floor tiles and the walls of buildings and homes, the need for wall sockets will be eliminated altogether! This same wireless power technology can be used to charge electric vehicles when parked over a transmitting coil embedded in the floor of a garage, or even drone in mid-air.

There are projects underway to embed wireless chargers at bus stops. Eventually, in a one-minute stop, a bus can get enough charge to drive a mile to the next bus stop. This could eliminate the need for most of the heavy batteries and overhead electrical systems that burden electric buses today.

Transforming Medicine

We are all getting older, and, as we age, we develop more opportunities for frailties and chronic health problems. Today there are major advances in fields such as implantable systems, diagnostic imaging, and prosthetics that are enabled by eGaN technology.

Check Cap graphic

 

Figure 5: Diagnostic colonoscopy “pill”.

 

Wireless power is already having an impact on implantable systems such as heart pumps. Beyond just artificial hearts, many other medical systems can also benefit. AsDr. Pramod Bonde of the University of Pittsburg Medical Center speculated, “[wireless power] can be leveraged to simplify sensor systems, to power medical implants and reduce electrical wiring in day-to-day care of the patients.”

But it’s not just eGaN technology in wireless power that is transforming medicine. Imaging technology is also improving by leaps and bounds! The resolution of MRI machines is being enhanced through the development of smaller and more efficient sensing coils using eGaN FETs and ICs. Diagnostic colonoscopies are about to become a thing of the past due to today’s eGaN FETs that are enabling an entire x-ray system to be squeezed into an ingestible and disposable tablet. These types of non-invasive imaging breakthroughs significantly reduce the cost of health care through early warning and non-invasive diagnostics. As we integrate entire systems on a single eGaN chip, miniaturization and image resolution improves the standard of care while medical costs come down.

Wireless Communications

Envelope Tracking is a power supply technique that can double the energy efficiency of RF power amplifiers used to transmit all of our voice and data communications through satellites, base stations, and cell phones. Envelope tracking is accomplished by tracking the power demand precisely and providing the power to exactly fit the amplifier’s signal modulation needs. Today, RF power amplifiers operate at a fixed power level delivering maximum power whether or not the transmitter needs it. Excitingly enough, eGaN transistors were the first transistors capable of tracking power demands at the high data transmission rates used in 4G LTE network base stations!  As we move to 5G formats the need for envelope tracking becomes absolute.

Envelope Tracking graphic (LinkedIn)Figure 6: Without envelope tracking most of the power consumption in the 4G/LTE power amplifier is wasted.

 

 

 

Is it easy to use?

At EPC we designed our GaN transistors (eGaN FETs) to be very similar in behavior to the aging power MOSFETs (except they deliver much, much more performance!), and therefore power systems engineers can use their design experience with minimal additional training. To assist design engineers up the learning curve, EPC has established itself as the leader in educating the industry about gallium nitride devices and their applications. EPC published the industry’s first GaN transistor textbook (in English and Chinese) – GaN Transistors for Efficient Power Conversion. The second edition was published in 2015 by J. Wiley and is available through Amazon as well as textbook retailers. More recently, we have published two application-focused handbooks to further assist power designers of DC-DC conversion and wireless power transfer systems in the use of GaN. EPC is working with more than 60 universitiesaround the world in order to lay the groundwork for the next generation of highly skilled power system designers trained in getting the most out of GaN technology.

BOOKS image APEC_withoutprices (Image)

 

Figure 7:  EPC has written three books covering the use of GaN in state-of-the-art power conversion, wireless poer, and DC-DC conversion

 

 

 

Is it VERY cost effective?

GaN transistors and integrated circuits from EPC are produced using processes similar to silicon power MOSFETs, have many fewer processing steps than MOSFETs, and more devices are produced per manufacturing run because GaN devices are much smaller than their silicon counterparts. In addition, lower voltage (<500 V) GaN transistors do not require the costly packaging needed to protect their silicon predecessors.  This packaging advantage alone can cut the cost of manufacture in half and, combined with high manufacturing yields and small device size, has resulted in the cost of a GaN transistor from EPC to be lower in cost than a comparable (but lower performance) silicon power MOSFET.  Today the designer does not even need to take advantage of the higher performance of GaN to realize cost savings in their system!

Cost effective imageFigure 8:  Comparison of GaN transistor costs and silicon MOSFETs with the same voltage and on-resistance.

 

 

 

Is it reliable?

To date, several manufacturers of GaN transistors have reported excellent results from in-house stress testing.  In December 2015 EPC published its 7th reliability reportincluding 7 million device hours under stress.  In addition, for the first time, EPC published the results from tracking parts in the field for 17 billion hours over a six year period.  GaN FETs, aided by the fact that they are chipscale, and therefore do not suffer  from failure modes common to packaged semiconductors, achieved a remarkable 0.24 failures for every billion device hours.  There is no doubt that eGaN FETs are suitable for any application in which MOSFETs are used.

 

EPC Chip-Scale Package eGaN FET Reliability

Figure 9:  eGaN FET reliability after 6 years and 17 billion hours in the field is proving better than the aging MOSFET.

 

 

 

Summary

Thus, the four requisite attributes for GaN to displace the silicon MOSFET have been achieved: switching speed, small size, competitive cost, and high reliability give the GaN transistor the “winning edge” to displace the silicon MOSFET in power conversion applications.  Similar analysis shows that soon the same will be true for power ICs and analog integrated circuits created with GaN technology.  Perhaps in 3-5 years the same will be true for digital integrated circuits.  GaN is a relatively new technology and has just begun its journey up the learning curve!

Continue reading

How This Tech in Self-Driving Cars Is Paving a Road Beyond Silicon

1125

Written by:

Fortune LiDAR

Ever heard of gallium nitride transistors? You’re about to thanks to Lidar in cars. 

In the future, self-driving cars will require laser-based sensing tech, and these systems will need new types of high-speed transistors and chips that can beat out silicon.

That’s the assertion of Alex Lidow, a Stanford PhD physicist, entrepreneur, and CEO and founder of Efficient Power Conversion (commonly called EPC), a company based in El Segundo, Calif. that makes transistors and chips out of a material that operates more quickly and efficiently—and costs less than silicon.

 

Continue reading